NA49/NA61 vs FLUKA

Update for NUMIX meeting

Pedro Mediano

December 2, 2013

Quick reminder

Beam: Protons with 158 GeV momentum

Target: Graphite for the pion production analysis and

hydrogen for kaon analysis.

FLUKA: Version 2011.2b.4.

We're measuring invariant cross section binned in CMS Feynman X and transverse momentum (x_F, p_T) .

$$f(x_F, p_T) = E(x_F, p_T) \frac{d^3 \sigma}{dp^3}$$

NA49

 π^{\pm} phase space coverage

Figure: NA49 bin centers (points) and NDOS-relevant region (green)

NA49

 K^{\pm} phase space coverage

Figure: NA49 bin centers (points) and NDOS-relevant region (green)

General procedure

- Run FLUKA simulation. For this presentation, 25×10^9 POT in each case.
 - 500 statistically independent runs of 5×10^7 POT each.
 - Note: Error is computed as the variance of these 500 estimators
- Gather the results and compute errors using pyROOT.
- Read NA49/NA61 data and compare to FLUKA using pyROOT. Build desired plots/histograms.

USRYIELD

- It can calculate invariant cross section in (x_F, p_T) . By default uses the nucleon-nucleon CMS and gives the result in mb/GeV² (same as NA49).
- Scores particles as they emerge from the collision. Thus we avoid issues with reinteraction and decays.

Binning

- NA49 includes finite bin size correction factor.
- On our side, we can pick thin bins (0.005 wide in both x_F and p_T) so that correction is negligible.
- Bin centers of simulation exactly match bin centers in NA49.

Normalization

- With other estimators one must multiply each value by the width of the bin to get an integrated result. As far as I know this is **not** true for invariant cross section. Thus no factor is applied for this.
- We scale all results by the interaction probability.

Physics

- One run with FLUKA default PEANUT setting (using PEANUT for energy < 5 GeV).
- Another run forcing PEANUT for all interactions.

Comparison • Standardized differences:

$$z = \frac{f_{FLUKA} - f_{NA}}{\sqrt{\sigma_{FLUKA}^2 + \sigma_{NA}^2}}$$

Relative differences:

$$z = 100 \frac{f_{FLUKA} - f_{NA}}{f_{NA}}$$

Uncertainty

We have simulated enough events to get a significantly smaller error than NA49.

Particle	MC mean error (%)	NA49 mean error (%)
π+	0.5	3
π-	0.6	3
K +	1.8	3.7
K -	2.2	4.2

NA49 π^+ Standardized Differences (as an example)

Fluka (w/ PEANUT) - NA49

Standardized differences

Fluka (w/ PEANUT) - NA49

Relative differences

Fluka (w/ PEANUT) - Fluka (w/o PEANUT)

Standardized differences

Fluka (w/ PEANUT) - Fluka (w/o PEANUT)

Relative differences

NA61

Changes w.r.t. NA49

Beam: Still protons, now with 31GeV momentum instead of

158 GeV.

Target: Only carbon.

Now we measure differential cross-section binned in total momentum and polar angle, both in LAB frame.

$$f(p,\theta) = \frac{d\sigma}{dp}$$

NA61

 π^{\pm} phase space coverage

Figure: NA61 bin centers (points) and NDOS-relevant region (green)

USRYIELD The function can also calculate differential cross section in (p, θ) . No problem here.

Binning

- NA61 do not include finite bin size correction factor.
- Thus, we match exactly the bin widths in NA61.

Normalization

- In this case we must multiply by the width of the angular bin in solid angle.
- Same issue as in NA49 with the scaling by the reinteraction probability.
- Physics This time we only compare results from NA61 with FLUKA with forced PEANUT.
- Comparison We use both standardized and percent differences, same as NA49.

NA61 Uncertainty

As with NA49, error in the simulation is much smaller than in NA61.

Particle	MC mean error (%)	NA49 mean error (%)
π+	0.5	8.8
π-	0.8	7.8

NA61 π^+ Standardized differences

Standardized Differences

NA61 π^+ Relative differences

Relative Differences Squared

NA61 π^- Standardized differences

Standardized Differences

NA61 π^- Relative differences

Relative Differences Squared

Next steps

- Weighting by neutrino flux in NDOS
- Study Kaon production with NA61 setup
- Simulate beam at 120 GeV momentum and compare with the interpolation done by NA49 and NA61.